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By employing pump-probe back longitudinal diffractometry, the electron density and decay dynamics of a
weak plasma channel created by a 1-KHz fs laser in air has been investigated. With ultrashort laser pulses of
50 fs and low energy of 0.6 mJ, we observe weak plasma channels with a length �2 cm in air. An analytical
reconstruction method of electron density has been analyzed, which is sensitive to the phase shift and channel
size. The electron density in the weak plasma channel is extracted to be about 4�1016 cm−3. The diameters of
the plasma channel and the filament are about 50 and 150 �m, respectively, and the measurable electron
density can be extended to less than 1015 cm−3. Moreover, a different time-frequency technique called linearly
chirped longitudinal diffractometry is proposed to time-resolved investigate ultrafast ionization dynamics of
laser-irradiated gas, laser interaction with cluster beam, etc.
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I. INTRODUCTION

Plasma channels and self-phase matching excited by self-
guided ultrafast laser pulses owing to the balance between
the kerr self-focusing and defocusing due to the multiphoton
ionization and diffraction of the laser beam is of much cur-
rent interest owing to applications which include initiating
laser-guided discharges, possible real lighting control, fem-
tosecond lidar, conical emission, and high-order harmonics
generation �HHG� �1–5�. In 1996, Braun et al. �5� observed
self-focusing into filaments in air with infrared laser pulses.
This effect was confirmed and reported by many other
groups in the following years. The average initial electron
density for a multifilamentary structure was estimated by
Schillinger et al. to be ne�1011 cm−3, whereas La Fontaine
et al. and Tzortakis et al. estimated a value ne�1016 cm−3

for a single filament �6–9� and it was measured to be about
2.7�1018 cm−3 in Ref. �10�. The production of low-density
electrons will balance the self-focusing effect and leads to a
limited beam diameter as well as limited peak intensity. This
is known as intensity clamping �11–13�. At such low densi-
ties, owing to the attachment of electrons to O2, the electron-
ion recombination, and the ion-ion recombination, the elec-
tron density in the plasma channel will decrease to the much
lower level of ne�1015 cm−3 within several hundreds of pi-
coseconds to several nanoseconds after the end of the laser
pulse. Such sparse electrons could not be easily and nicely
measured by interferometric methods such as Michelson and
Wollaston interferometry �6,10�, and the electric cross-
conductivity technique �14�. In Ref. �6� where a longitudinal
Michelson spectral interferometry was employed, the elec-
tron density was measured to be �2�1015 cm−3 which was

revised to be around 1016–1017 cm−3 by calculating the effect
of radial refraction of the probe beam on the phase integra-
tion path length because a long filament of 1.5 m there would
deviate the probe beam. In this paper, a pump-probe longi-
tudinal diffractometry by measuring a much shorter plasma
channel has been employed to investigate the temporal evo-
lution of the electron density in the weak plasma channel
created by a 1-KHz fs laser in air. The electron density in the
weak plasma channel is extracted to be about 4�1016 cm−3,
and the diameters of the plasma channel and the filament are
about 50 and 150 �m, respectively. The reconstruction
method of electron density from diffraction patterns has been
analyzed, and an analytical method is given which is sensi-
tive to the phase shift and plasma channel size and therefore
has a high precision and sensitivity. And the measurable elec-
tron density can be extended to less than 1015 cm−3. More-
over, a different time-frequency technique called linearly
chirped longitudinal diffractometry is first proposed to time-
resolved investigate ultrafast ionization dynamics of laser-
irradiated gas, laser interaction with cluster beam, etc. This
method can be achieved by a single shot and is helpful for us
to get insight into the physics of laser-matter interactions.

II. EXPERIMENTAL SETUP

In our experiments, the laser system is a 1-KHz Ti:sap-
phire fs laser system that can provide up to 0.6 mJ energy in
50-fs pulses and at a central wavelength of 800 nm. At the
output of the laser, the beam profile is nearly Gaussian with
a beam waist of w0=7 mm. The laser beam was focused in
air with a thin lens of focal length f =40 cm and formed a
plasma channel. The electron density in the channel is esti-
mated to be lower than 1017 cm−3 since the formed plasma
channel is very weak and only can be discerned in a dark
background. At such low-density level it is hard to identify*Electronic address: michaeljs_liu@mail.siom.ac.cn
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the electron density and the channel size by using Michelson
or Wollaston interferometry. In order to have an insight into
the temporal evolution of the electron density in the weak
plasma channel, a pump-probe back longitudinal diffractom-
etry has been developed to measure the electron density of
less than 1016 cm−3, which is sensitive to the phase and chan-
nel size, and the measurable electron density can be extended
to less than 1015 cm−3.

The experimental setup is shown in Fig. 1�a�, and the
schematic diagram for the propagation of a light field
through a thin lens is shown in Fig. 1�b�. The laser pulse
from the 1-KHz laser system with energy of 0.6 mJ and pulse
duration of 50 fs is divided by a beam splitter which has a
reflectivity of 90% and transmissivity of 10%. The high-
energy laser pulse was focused by a thin lens �lens 1 in Fig.
1�a�� of focal length f =40 cm and formed a plasma channel
in air. The other low-energy pulse was used as a probe beam
which anticopropagates against the direction of the formed
weak plasma channel. The probe laser pulse after transmit-
ting through the channel was diffracted by a lens onto a
charge-coupled device �CCD� camera by which the diffrac-
tion pattern was recorded. The beam splitter in Fig. 1�a�
which reflects most of the pump laser and transmits a small
part of the probe beam has a reflectivity of 90% and trans-
missivity of 10%. From this diffraction pattern the phase
shift experienced by the probe laser can be reconstructed,
and thus the electron density and channel size can be ob-
tained. Shown in Fig. 2 is the recorded diffraction pattern
which is the subtraction of intensity distribution with a
plasma channel by that without a channel, the delay time
between the pump and probe laser pulse is zero.

FIG. 3. �a� Measured diffraction fringe along the radial direction
at delay time=0 ps compared with the fit lines at various phase
shifts when the plasma channel size is set as 50 �m. �b� Compared
with the fit lines at various channel sizes when the phase shift is set
at �0.6�.

FIG. 1. �a� Experimental scheme for the time-resolved longitu-
dinal diffraction interferometry. The laser beam �0.3 mJ, 50 fs, 800
nm� was focused in air with a thin lens of focal length f =40 cm and
formed a plasma channel. The beam splitter BS1 has a reflectivity
of 90% and transmissivity of 10%. The diffraction fringe pattern of
the probe beam is recorded by a CCD camera at various delay
times. �b� Schematic diagram for the propagation of a light field
through a thin lens.

FIG. 2. The recorded diffraction fringe at delay time=0 ps.
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III. ANALYSIS

As shown in Figs. 1�a� and 1�b�, the light field of the
probe laser pulse after transmitting through the plasma chan-
nel propagates through a thin lens; the plasma filament which
has a small size with a diameter of about 50 �m plays the
role of a local phase shifter for the probe laser pulse. At the
distance d1 from the lens’ focus, a CCD camera is placed
where the light field is expressed by the Fresnel diffraction
integral �15�,

U2�x,y� � U�x,y� = ���� U0��,��exp�− j����2 + �2��

�exp�ja0���� − ��2 + ��� − ��2��

�exp�ja1��x − ���2 + �y − ���2��d�d�d��d��,

�1�

where a0=� /	d0, a1=� /	d1, �=� /	f . d0 is the length be-
tween the lens and the plasma channel, d1 is the length be-
tween the lens and the CCD camera, and f is the focal length.
�� ,�� , ��� ,���, and �x ,y� correspond to the coordinates in
object, lens, and recording planes, respectively, which is
shown in Fig. 1�b�. After simplification,

U�x,y� = exp�jA0�x2 + y2��

�
/

U0��,��exp�jA1��2 + �2��

�exp�− jA2�x� + y���d�d� , �2�

where A0= �� /	d1��1−1/ �1+d1 /d0−d1 / f��, A1= �� /	d0��1
−1/ �1+d0 /d1−d0 / f��, A2= �2� /	��d1+d0−d0d1 / f�, and the
probe electromagnetic field has a radial symmetry and can be
written as U0�r�=exp�−ar2��exp�−j
�r��, where the phase
shift 
�r� caused by the plasma filament is assumed to be


�r� = 	
0 r � rc

0 r � rc

 . �3�

rc is the radius of the plasma filament, the accumulated phase

�r� is related to the plasma density ne by the relation 
0

= �2� /	��ne /2nc�lchannel, where nc is the plasma critical den-
sity and lchannel is the length of the plasma filament. Owing to
the small size of the filament compared to the waist of the
probe laser beam, the integral in Eq. �2� can be divided into
two parts:

Uyes�x,y� = exp�jA0�x2 + y2�� � �
0

rc

+� �
rc

�

U0��,��exp�jA1��2 + �2��exp�− jA2�x� + y���d�d� = E0e−j
0 + E1, �4�

Uno�x,y� = exp�jA0�x2 + y2�� � �
0

rc

+� �
rc

�

U0��,��exp�jA1��2 + �2��exp�− jA2�x� + y���d�d� = E0 + E1. �5�

The subscripts yes and no correspond to the diffracted light
field with and without the effect of a plasma channel, respec-
tively. E0 is the Fraunhofer diffraction integral of a small
circular hole because the quadratic phase term in the integral
is very small and can be neglected. E1 is the Fresnel diffrac-
tion integral of the probe beam with the channel area ex-
cluded and has the following Gaussian form:

E1�r� � Uno�x,y� = C0exp�jA0r2�exp�− b0r2 − jb1r2 + j�/2� .

�6�

With some operations, the recorded diffraction pattern can
be expressed as

Id�r� = Iyes�r� − Ino�r�

= E0e−j
0E1
* − E0E1

* + c.c.

= − sgn�A1�C�rc
2 1

a2 + A1
2

�exp�− b0r2�
J1�A2rcr�

A2rcr
� cos�b1r2 − 
0/2�sin�
0/2� ,

�7�

where b0=A2
2a /4�a2+A1

2�, b1=A2
2A1 /4�a2+A1

2�, and sgn�A1�
is the sign of A1. Therefore the recorded diffraction pattern is
the product of a Gaussian function, a Bessel function and an
oscillating cosine function, which can explain the observed
circle fringes shown in Fig. 2. The Bessel function in the
above equation is the Fraunhofer diffraction of a circle hole,
which is determined by the channel size. The size of the
plasma channel has the effect on the relative amplitude of the
different rings of the diffraction patterns while the phase shift
has the effect on the brightness on the diffraction pattern.
Therefore the size of the plasma channel and the phase shift
can be determined at the same time by the diffraction pattern.
From this equation, we can reconstruct the phase shift the
probe beam experienced, and the size of the filament. In Fig.
3, we fit the recorded fringe pattern at delay time=0 by the
above equation �6� with various phase shifts and channel
sizes. �We note that the fitting result would be the same by
numerically integrating Eq. �2� but the physical interpreta-
tion would be more cumbersome.� It is found that the re-
corded fringe profile along the radial direction can uniquely
determine the phase shift and channel size. Moreover, it is
not necessary for the calibration of the recorded intensity.
From the comparison we found that only when the plasma
channel size is set as �50 �m and the phase shift is set as
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�0.6� at the same time, the fit will be closest to the mea-
sured diffraction pattern. Since the electrons in the plasma
channel are produced by multiphoton ionization, the size of
the filament can be calculated as about 150 �m if the profile
of laser intensity in the filament is assumed as Gaussian and
eight to ten photons are necessary to ionize O2 molecules
�ionization potential=12.1 eV� and N2 molecules
�ionization potential=15.6 eV�. The measured size of the
filament here is close to the result given as 150–170 �m in
Ref. �16� where a windowless helium cell was used to mea-
sure directly the transverse profile of the filament. From the
temporal measurement by adjusting the pump-probe delay,
the length of the plasma channel in our experiment is calcu-
lated to be about �1.8 cm. The length is defined by the
distance from the very weak appearance of the diffraction
fringes through the maximum brightness and back to the
weak fringes. Therefore the calculated electron density at
delay time=0 is �4�1016 cm−3. The recorded fringe pat-
terns at various delay time=0, 100, 430 and 830 ps, respec-
tively, are shown in Fig. 4, and the temporal evolution of

electron density in the plasma channel is shown in Fig. 5.
The calculations of electron density and channel size for
various delay time have shown that the expansion of the
plasma channel can be neglected in less than 1 ns after the
production of the filament.

In our analysis, the electron density along the filament and
radial direction is assumed to be constant, therefore the cal-
culated electron density is an effective value as measured in
Refs. �6,7,12�. Since the laser intensity in the filament has a
radial gradient, the electron density in the plasma channel
caused by multiphoton ionization would have also a radial
gradient. If the electron density is too high and the probe
beam passes through a too long plasma channel, the probe
beam will be very likely to deviate from its path because of
refraction on the steep radial gradients of electron density
present in the filament, which will make exact measurement
of electron density difficult. We use ray tracing to estimate
the effect of radial refraction caused by the plasma channel
on the measured phase shift experienced by the probe beam.
The electron density in the plasma channel is assumed as a
radial Gaussian profile and uniform in the direction of propa-
gation. ne�r�=ne�0�exp�−0.69r2 /R2�, where ne�0� is the
maximum electron density on axis, R is the radius �full width
at half maximum� of the plasma channel. The refractive in-
dex n�r� in the plasma channel can be expressed as

n�r� � 1 −
ne�0�
2nc

exp�− 0.69r2/R2� �8�

and the propagation of the rays along the plasma channel can
be described by the following equation of ray tracing �17�:

d

ds
�n�r�

dr

ds
� = �n�r� , �9�

where ds is the distance the rays propagate. By solving the
above equation we can estimate the effect of radial refraction
caused by the plasma channel on the measured phase shift

FIG. 4. The recorded fringe patterns at various delay time: 0,
100, 430, and 830 ps, respectively.

FIG. 5. Calculated temporal evolution of electron density in the
plasma channel.

FIG. 6. The calculated phase shift experienced by the probe
beam at the exit of the plasma channel when the electron densities
are assumed as Gaussian and set at 5�1015,2�1016, and 5
�1016cm−3, respectively. Solid line: the phase shift 
�r�
=�0

lchannel�2� /	��ne�r� /2nc�ds is calculated by solving the ray-
tracing equation. Dashed line: the phase shift is calculated by a
direct integration 
0= �2� /	��ne /2nc�lchannel.
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experienced by the probe beam. The length and the radius of
the plasma channel are set at 1.8 cm and 25 �m, respec-
tively, which are close to the measurement. If the radial re-
fraction is not considered, the phase shift experienced by the
probe beam can be calculated by a direct integration 
�r�
= �2� /	��ne�r� /2nc�lchannel, which has the same Gaussian
profile as the electron density. The dashed lines in Fig. 6
show the directly integrated phase shift when the electron
densities are set at 5�1015,2�1016, and 5�1016cm−3, re-
spectively. However, the phase shift 
�r�=�0

lchannel�2� /	�
��ne�r� /2nc�ds at the exit of the plasma channel calculated
by solving the above equation of ray tracing �9� at the cor-
responding electron densities is shown in the solid line re-
spectively in Fig. 6. It can be seen that in our case when the
electron density is lower than 1017 cm−3, the phase shift 
�r�
experienced by the probe beam due to the radial refraction
has a small difference from the direct integrated phase shift
although the diameter of the phase shift 
�r� increases a little
due to refraction of the plasma channel when the electron
density is 5�1016 cm−3. By comparison, in Ref. �6� where a
long filament of 1.5 m would deviate the probe beam from
its path more seriously, the measured electron density there
has been revised to be around 1016–1017 cm−3 which is in

agreement with our measurement of electron density in the
filament. For the method proposed here in this paper, the
electron density and channel size can be both measured with
a higher precision and sensitivity when the electron density
is not too high �1017 cm−3 in our case� or the length of the
measured plasma channel is not too long. However, using a
probe beam with a shorter wavelength such as frequency
doubled of 800 nm can decrease the effect of radial refrac-
tion. Moreover, the measured length of the plasma channel
can be shortened to decrease the effect of radial refraction by
changing the delay between the pump and the probe laser
pulses in our case if the electron density is much higher.

IV. PROPOSAL OF TIME-RESOLVED MEASUREMENT
BY USING LINEARLY CHIRPED LASER PULSE

Time-frequency domain techniques such as frequency re-
solved optical gating �FROG�, multipulse interferometric
FROG �MI-FROG�, and spectral interferometry �SI� have
been widely employed in many experiments to measure ul-
trafast ionization dynamics of laser-irradiated gases �18–20�,
laser-cluster interactions �21,22�, and laser-driven wakefields

FIG. 7. �a� Linearly varied phase shift with time. �b� Measured 2D diffraction fringe by a CCD camera. �c� The recorded diffraction
fringes in frequency and space domain where a linearly negative chirped laser beam is employed. �d� The light intensity as a function of laser
wavelength at the center of the fringes in �c�.
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�23�. Here in this section a different time-frequency tech-
nique called linearly chirped longitudinal diffractometry is to
be proposed as follows based upon the above results.

The experimental setup for this method is similar to that
shown in Fig. 1, except that the probe beam would be a
linearly chirped laser pulse which co-propagates with the
plasma filament in the same direction, and the CCD camera
would be replaced by a two-dimensional �2D� spectrometer
with a CCD camera. The light field of the linearly chirped
laser beam which is assumed to be a Gaussian function in
temporal-spatial domain has the following form:

U0�r,t� = exp�− ar2�exp�− j
�r,t��

�exp�− Tt2 + j��0t + bt2�� , �10�

where 2b is the chirp rate, �0 is the central frequency of the
probe beam, and the phase shift 
�r , t� caused by the plasma
is assumed to be


�r,t� = 	
0�t� r � rc�t�
0 r � rc�t� .


 �11�

rc�t� is the radius of the plasma filament, the accumulated
phase 
�r , t� is related to the plasma density ne�t� by the
relation 
0�t�= �2� /	��ne�t� /2nc�lchannel, where nc is the
plasma critical density and lchannel is the length of the plasma
filament. As discussed in Sec. III, the diffracted light field in
the recording screen can be expressed as

Uyes�r,t� = exp�jA0r2� � �
0

rc

+� �
rc

�

U0��,�,t�exp�jA1��2 + �2��

�exp�− jA2�x� + y���d�d�

= �E0�r�e−j
0�t� + E1�r��f�t� , �12�

where f�t�=exp�−Tt2+ j��0t+bt2��. The spectrum of the dif-
fracted light field in the frequency domain is the Fourier
transform of the above equation in time domain and is writ-
ten

Uyes�r,�� = F.T.��E0�r�e−j
0�t� + E1�r��f�t��

= �E0�r�e−j�0��� + E1�r��F��� . �13�

F��� is the Fourier transformation of f�t�, �0����
0(t���)
+ 1

2A��
0 /�t�2 / �1−2A��2
0 /�t2��, and A= 1
2 �b / �T2+b2��

�22�. If the blueshift satisfies 1
2A��
0 /�t�2�
0(t���), a

simple linear mapping approach to extract phase shift as

0(t���)=�0�A��−�0�� gives a good result with less distor-
tion �18,22�. Therefore the recorded diffraction pattern in the
frequency domain in the direction of the slit of the spectrom-
eter can be written as

Id�y,�� = Iyes�y,�� − Ino�y,�� = E0�y,��e−j�0���E1
*�y,�� − E0�y,��E1

*�y,�� + c.c. = − sgn�A1�C�rc
2 1

a2 + A1
2

�exp�− b0y2�
J1�A2rcy�

A2rcy
cos�b1y2 − �0���/2�sin��0���/2�F2��� . �14�

For a linearly varied phase shift 
0�t� with time as shown
in Fig. 7�a�, the 2D spatial diffraction fringes would be
shown in Fig. 7�b�. However, if we use a linearly negative
chirped laser pulse �1.5 ps� with a bandwidth of 45 nm �full
width at half maximum� and a spectrometer of which the slit
is placed in the radial direction of the fringes in Fig. 7�b�, the
recorded diffraction fringes Id�y ,�� in frequency and space
domain would be like that shown in Fig. 7�c�. At different
wavelength 	, the fringe pattern Id�y ,�� shown in Fig. 7�c�
is proportional to cos�b1y2−�0��� /2�sin��0��� /2�F2���,
which is determined by the phase shift �0���. For a linearly
negative chirped laser pulse, the blue light �short wave-
length� walks in front of the red light �long wavelength�,
therefore the phase shift �0��� increases as the wavelength
increases for the phase shift 
0�t� shown in Fig. 7�a�. From
Fig. 7�c�, the phase shift �0��� at different wavelength 	 can
be calculated by fitting the fringe pattern Id�y ,�� with Eqs.
�14� as discussed in Sec. III, and thus the phase shift 
0�t� in
the time domain can also be obtained by using a simple

linear mapping approach 
0(t���)=�0�A��−�0�� or a full
Fourier extraction e−j
0�t�f�t�=F.T−1�e−j�0���F����
�18,20–22�. The reconstruction of the phase shift 
0�t� from
�0��� will be that shown in Fig. 7�a�. The time resolution is
�t=2� /�� for a full Fourier extraction, and �� is the full
spectral width of the probe laser. The light intensity as a
function of laser wavelength at the center of the fringes in
Fig. 7�c� is also shown in Fig. 7�d�, which corresponds to
Id�0,�� and is proportional to sin(�0���)F2���. It reflects the
change of phase shift over a period from 0 to 2� in a single
measurement. This method proposed here could be used to
time-resolved investigate ultrafast ionization dynamics of
laser-irradiated gas, laser interaction with cluster beam, etc.
It can be achieved by a single shot, and shot to shot fluctua-
tions can be avoided. Since the diffractometry proposed here
is sensitive to the phase shift, it can be used for the measure-
ment of much smaller phase shift compared to the Michelson
or Wollaston interferometry �6,10�. The effect of refraction
can be avoided if the phase shift is small.
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V. SUMMARY

In order to have an insight into the temporal evolution of
the electron density in the weak plasma channel where the
electron density is expected to be very low, a pump-probe
back longitudinal diffractometry has been developed to mea-
sure the electron density of less than 1016 cm−3, which is
sensitive to the phase and channel size. An analytical recon-
struction method of phase shift and channel size has been
given. The measurable sensitivity of phase shift is able to be
less than one-twentieth wavelength, which is higher than that
of Michelson interferometric methods, and the measurable
electron density can be extended to less than 1015 cm−3.
Moreover, a time-frequency technique called linearly chirped

longitudinal diffractometry is proposed to time-resolved in-
vestigate ultrafast ionization dynamics of laser-irradiated
gas, laser interaction with cluster beam, etc.
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